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A B S T R A C T   

Precision herbicide application can substantially reduce herbicide input, thereby cutting chemical costs and 
minimizing adverse environmental impacts. A smart sprayer prototype was designed and developed for precision 
herbicide application in turf. This is the first study evaluating the performances of a precision sprayer for weed 
control in turf in field conditions. The objectives of this research were to 1) evaluate and compare the perfor-
mances of the traditional broadcast application and a newly developed precision spraying technology for control 
of weeds in dormant bermudagrass turf, and 2) investigate the influence of weed coverage on the spray volume 
requirement when using the precision spraying technology developed here. DenseNet, GoogLeNet, and ResNet 
were evaluated for discriminating the grid cells containing weeds (spray) with the grid cells containing ber-
mudagrass turf exclusively (nonspray). All three neural networks had an F1 score above 0.989 in the validation 
datasets. ResNet outperformed DenseNet and GoogLeNet with the highest F1 scores (≥0.992) in the testing 
datasets. Applying herbicide only to turf areas infested with weeds saved a significant amount of the herbicide, 
while achieving the same level of weed control compared to the broadcast application. The developed precision 
spraying technology performed well and effectively reduced the amount of herbicide input applied to the 
dormant bermudagrass turf, compared to the broadcast herbicide application. Overall, the smart sprayer pro-
totype developed in this research can be used for precision weed control in dormant turf, although its design 
needs to be further optimized.   

1. Introduction 

Weeds pose a significant challenge for turf management. Weeds 
compete with turfgrass for sunlight, nutrients, water, and space, and 
adversely impact turf aesthetics and functionality (Hamuda et al., 2016; 
Liu and Bruch, 2020). It was reported that approximately half of the golf 
players would stop using a golf course if the fairways are heavily infested 
with weeds (Parra et al., 2020). Weed management in turf predomi-
nately relies on the broadcast application of herbicides over the entire 
turf, including where weeds do not occur (Dai et al., 2019; Yu et al., 
2019a). However, excessive use of synthetic herbicides may have a 
negative environmental impact. For example, atrazine is a restricted-use 
pesticide applied in residential lawns and golf courses in the Southeast 
United States (Hoffman et al., 2000). However, it is one of the most 

frequently detected pesticides in underground water resources, and is 
currently banned in Europe (Deb, 2006; Li et al., 2002). In addition, 
several of the herbicides registered for weed control in turf are expen-
sive. For example, in the United States, a single broadcast application of 
amicarbazone at 0.25 kg a. i. ha− 1 costs approximately US$1500. The 
environmental concerns and the high costs of herbicides call for alter-
native weed control approaches (Mennan et al., 2020; Pimentel and 
Burgess, 2014; Shuping et al., 2023). In this respect, precision herbicide 
application technologies can be employed to reduce herbicide inputs 
(Åstrand and Baerveldt, 2002; Jin et al., 2022c; Partel et al., 2019). 

Precision herbicide application relies heavily on autonomous weed 
detection (Jin et al., 2022d; Peteinatos et al., 2014). Visual character-
istics can be extracted with ground-based sensors (Jin et al., 2021; Partel 
et al., 2019). Images of plants are analyzed based on their color (Tang 
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et al., 2016), morphological (Perez et al., 2000), or textural features 
(Bakhshipour et al., 2017) to locate the position of target weeds or 
identify and discriminate between crops and weeds. Detection and 
discrimination of weeds in crops are inherently challenging because of 
similar color and morphological features (Hasan et al., 2021). In recent 
years, deep learning, especially deep convolutional neural networks, has 
drawn significant attention in image classification and object detection 
due to their robustness, reliability, and repeatability (He et al., 2020; Jin 
et al., 2023; Shi et al., 2020). Deep learning models have an extraordi-
nary ability to extract complex features from images without involving 
hand-coded rules or human domain knowledge (Jordan and Mitchell, 
2015; Liakos et al., 2018). Deep learning has proven to be an incredible 
tool in various scientific applications, such as computer vision (Gu et al., 
2018; Shi et al., 2020; Zhou et al., 2020), natural language processing 
(Collobert and Weston, 2008; Collobert et al., 2011), and speech 
recognition (Hinton et al., 2012; LeCun et al., 2015). 

Recent studies have documented excellent performances of deep 
convolutional neural networks for weed detection in turf (Jin et al., 
2022b; Xie et al., 2021; Yu et al., 2019b, 2019c). For example, Yu et al. 
evaluated various object detection (DetectNet) and image classification 
neural networks (AlexNet, GoogLeNet, and VGGNet) for weed detection 
in bermudagrass [Cynodon dactylon (L.) Pers.] and perennial ryegrass 
(Lolium perenne L.) and found that image classification neural networks 
performed well in detecting and discriminating the images containing 
broadleaf and grassy weeds growing in turfgrass (Yu et al., 2019a, 
2020). In another study, VGGNet effectively detected various broadleaf 
weeds growing in dormant bermudagrass, while DetectNet achieved an 
outstanding performance at detecting cutleaf evening-primrose (Oeno-
thera laciniata Hill) growing in bahiagrass (Paspalum notatum Flugge) 
(Yu et al., 2019b). 

Precision herbicide application has been increasingly studied in the 
past few decades (Hu et al., 2022; Liu and Bruch, 2020; Partel et al., 
2019; Slaughter et al., 2008). Lee et al. (1999) developed and evaluated 
a smart sprayer for controlling weeds in tomatoes (Solanum lycopersicum 
L.). The authors reported that the machine vision system accurately 
identified 73% of the tomato plants and 69% of the weeds; however, the 
sprayer only achieved 48% spray accuracy on the target weeds. A major 
challenge at that time was to accurately and reliably detect and 
discriminate between crops and weeds (Utstumo et al., 2018). Recently, 
new spraying technologies have improved spray accuracies by adopting 
deep learning techniques (Hasan et al., 2021; Kamilaris and Pre-
nafeta-Boldú, 2018). Calvert et al. (2021) presented a robotic 
spot-spraying solution for controlling harrisia cactus (Cereus martinii 
Labour.) in rangeland pastures. The spot-spraying system utilized the 
MobileNet-v2 deep learning architecture to detect the weed with 97.2% 
average recall accuracy and 96% weed control efficacy. 

Traditional broadcast herbicide applications treat the entire field, 
resulting in unnecessary herbicide application to turf areas where weeds 
do not occur (Jin et al., 2022a). Precision herbicide spraying can 
significantly decrease herbicide input, reduce chemical costs, and 
minimize adverse environmental impacts (Balafoutis et al., 2017; 
Zhuang et al., 2021). Despite these technological advances, precision 
weed control in turf remains an underexplored field. In the present 
work, a smart sprayer prototype was designed and developed for pre-
cision herbicide application in turf. The trained deep learning neural 
networks were integrated into the machine vision system of the smart 
sprayer prototype to identify and locate weeds in dormant bermudagrass 
turf and control individual nozzles for precision herbicide spraying. The 
objectives of this research were to 1) evaluate and compare the perfor-
mances of the traditional broadcast application and precision spraying 
technology for the control of weeds in dormant bermudagrass turf, and 
2) investigate the relationship between weed coverage and the spray 
volume when using the developed precision spraying technology for 
weed control. 

2. Materials and methods 

2.1. Overview 

As shown in Fig. 1, the smart sprayer prototype includes individual 
nozzle control (10 nozzles and solenoid valves), a herbicide tank 
installed with a pump, a digital camera (MER-503-36U3M/C, DaHeng 
Image, Inc., Beijing, China), and a computational unit (NVIDIA Jetson 
TX2 GPU) for image processing and weed detection. The platform is 
controlled through vehicle electronics based on embedded controllers 
and standard communication protocols. The navigation of the platform 
is controlled manually via a mobile application. The spraying boom was 
designed to cover a spray swath of 1 m behind the vehicle. Ten pairs of 
solenoid valves and spray nozzles (equally spaced at 10 cm intervals) 
were mounted on the boom. The solenoid valves are individually 
controlled to turn on upon detecting weeds. The camera was mounted on 
the platform at a height of 1.2 m above the ground. An NVIDIA Jetson 
embedded Graphics Processing Unit (GPU) processor (Nvidia Jetson 
TX2, Santa Clara, CA, USA) was used to process images collected from 
the camera. The Jetson TX2 has a dual-core central processing unit 
(CPU) and a GPU with 256 CUDA (compute unified device architecture) 
cores, making it suitable for performing image classification. A custom 
software operating on the Jetson TX2 embedded processor was devel-
oped with Python (version 3.7) to detect and locate weeds and activate 
the corresponding solenoid valve and the associated nozzle on the boom. 

2.2. Weed detection and localization 

The camera of the smart sprayer captured images at a resolution of 
1920 × 1080 pixels. The field-of-view (FOV) of the camera covered a 
0.80 × 0.45 m2 area (highlighted with blue color in Fig. 2) with the 
shorter side perpendicular to the spraying boom. Based on the design of 
the machine vision system and the arrangement of nozzles on the 
spraying boom, two regions of interest (ROIs), each measuring 0.80 m in 
length by 0.09 m in width in front of the spraying boom, were cropped 
from the FOV of the camera to detect and localize weeds inside the boom 
box (Fig. 2). 

A graphical user interface (GUI) was developed with Python and 
PyQt5 library (Riverbank Computing Ltd., Dorchester, UK). The GUI 
screen (Fig. 3) was divided into the following sections: real-time frames 
(video streaming) acquired from the camera (left-top), camera settings 
including resolution, exposure, and white balance (left-bottom), the 
captured image (right-top), and weed detection and image processing 

Fig. 1. Main components of the smart sprayer prototype.  
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results with spraying maps of ROIs (right bottom). The GUI processed 
the input images and provided the on-screen updates of sprayer nozzle 
commands. 

Each ROI was divided into 8 grid cells (240 × 216 pixels), corre-
sponding to 8 nozzles on the boom. Only 8 of the 10 nozzles on the boom 
were used because the FOV covered the second to the ninth nozzle. The 
individual nozzles were independently controlled, and the sub-images 
inside the ROI containing weeds were identified and sprayed. The size 
of the field zone that one nozzle covers should be equal to or slightly 
larger than the detection zone of the vision system. Thus, the spatial 
resolution of the sensing system was considered the primary factor in the 
nozzle spacing selection. The camera height is adjustable so that the 
image view area could be fine-tuned to field conditions. The physical 
size represented by each grid cell was 0.10 m × 0.09 m, which was 
slightly smaller than the size of the area in which one nozzle was covered 
(0.10 m × 0.10 m). 

The developed custom software integrated with convolutional neural 
networks was used to detect and localize weeds growing in dormant 
bermudagrass turf by creating grid cells on the input images and 

identifying if the grid cells contained weeds. The grid cells were marked 
as the spraying areas if the inference indicated that they contained 
weeds. Three convolutional neural networks, including DenseNet 
(Huang et al., 2017), GoogLeNet (Szegedy et al., 2015), and ResNet (He 
et al., 2016) were evaluated to detect if the grid cells contained weeds. 
DenseNet computes dense and multi-scale features from the convolu-
tional layers of a convolutional neural network-based object classifier. It 
can enhance the declined accuracy caused by the vanishing gradient 
problem (Huang et al., 2017). GoogLeNet is designed in the form of 
inception architecture. It reduces the number of neurons and parameters 
by taking an average among the channels right before the dense layer 
(Szegedy et al., 2015). ResNet utilizes the concept of residual learning 
and employs identity-based skip connection in each residual unit to 
build very deep networks (He et al., 2016). 

The training images of various weeds growing in dormant bermu-
dagrass turf were primarily taken at the University of Georgia Griffin 
Campus in Griffin, GA, the United States (33.26◦N, 84.28◦W), and 
multiple home lawns and golf courses in Peachtree City, GA, the United 
States (33.39◦N, 84.59◦W) in early February 2018 using a digital camera 

Fig. 2. Geometry location of ROIs of the FOV. Abbreviations: ROIs = regions of interest, FOV = field-of-view.  

Fig. 3. Graphical user interface displays video streaming and processes the captured images. The grid cells of ROIs were highlighted as red color when the inter-
ference indicated they contained weeds. Abbreviation: ROIs = regions of interest. 
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(DSC-HX1, SONY®, Cyber-Shot Digital Still Camera, SONY Corporation, 
Minato, Tokyo, Japan). Testing images were taken at the Nanjing 
Forestry University, Nanjing, Jiangsu, China (32.08◦N, 118.82◦E) in 
December 2021 using a digital camera (MER-503-36U3M/C, DaHeng 
Image, Inc., Beijing, China). All training and testing images were ac-
quired at a ratio of 16:9, with a 1920 × 1080 pixels resolution. Images 
were taken in various light conditions, including clear, cloudy, and 
partially cloudy weather. 

When training convolutional neural networks to detect weeds 
growing in dormant bermudagrass, all images were cropped into 40 sub- 
images (5 rows by 8 columns) with a resolution of 240 × 216 pixels 
using ImageJ (version 2.1.0, an open source software available at htt 
ps://github.com/imagej/imagej). The training dataset contained 6000 
positive sub-images (with weeds) and 6000 negative sub-images 
(without weeds). The validation or testing dataset contained a total of 
500 positive and 500 negative sub-images. 

The training and testing were performed in PyTorch open source 
deep learning environment (available at https://pytorch.org/; Face-
book, San Jose, California, United States) using a graphic processing unit 
(NVIDIA GeForce RTX, 2080 Ti, NVIDIA; Santa Clara, USA). The con-
volutional neural networks were pre-trained using ImageNet dataset to 
initialize the weights and bias through the transfer learning approach 
(Deng et al., 2009; Lu et al., 2015). The hyper-parameters used for 
training the convolutional neural networks are presented in Table 1. 

The training and testing results of image classification neural net-
works were arranged in a binary classification confusion matrix con-
sisting of four conditions: a true positive (tp), a true negative (tn), a false 
positive (fp), and a false negative (fn). The performances of the neural 
networks were evaluated using precision, recall, and F1 score. 

Precision measures the ability of the neural network to detect the 
target and was calculated using the following equation (Sokolova and 
Lapalme, 2009): 

precision =
tp

tp + fp (1) 

Recall measures the effectiveness of the neural network to detect the 
target and was computed using the following equation (Sokolova and 
Lapalme, 2009): 

recall =
tp

tp + fn (2) 

The F1 score measures the overall performance of the neural network 
and was defined as the harmonic means of precision and recall, which 
was determined using the following equation (Sokolova and Lapalme, 
2009): 

F1 =
2 × precision × recall

precision + recall
(3)  

2.3. Main control system 

The main control system loop started with the program waiting to 
receive a trigger signal from the nozzle controller. When the sprayer was 
stopped after moving a constant distance (0.18 m, width of two ROIs), a 
trigger was sent after the vision system acquired the image. Afterward, 
the program started to create grid cells on each ROI and infer if the grid 

cells contained weeds. The grid cells were marked as spraying areas with 
the developed software if the inference result indicated they contained 
weeds. The values of 1 (otherwise 0) were appended to the command 
array. When all the grid cells of an ROI were processed, the encoded 
nozzle control command array was sent for that ROI. The nozzle com-
mands directed the nozzle controller to activate individual nozzles for 
herbicide spraying. The processing continued until two ROIs were pro-
cessed. Finally, the program returned to the initial status to wait for the 
trigger. On the side of the nozzle controller, the nozzle commands were 
received and decoded. The spraying was activated when the boom was 
over the weed area, which was calculated by the constant distance be-
tween the ROIs and the spray nozzles. 

2.4. Weed control 

Two field experiments were conducted to evaluate weed control 
using the developed smart sprayer prototype in dormant bermudagrass 
turf. Experiments were carried out from December 2021 to January 
2022 at separate turf fields on the campus of Nanjing Forestry University 
(NFU) in Nanjing, Jiangsu, China (32.08◦N, 118.82◦E). Glufosinate- 
ammonium (Binnong®, Binnong Technology, Shandong, China), a 
nonselective herbicide, was used to compare the broadcast and precision 
spraying using the developed smart sprayer for weed control. For 
broadcast application, glufosinate-ammonium at 1600 g a. i. ha− 1 was 
applied using the smart sprayer calibrated to deliver 400 L ha− 1 spray 
volume. The same spraying solution was used for precision spraying 
with the developed smart sprayer. 

The experimental design was a randomized complete block with four 
replications. A nontreated control was included in each replication. Each 
plot measured 0.8 by 1 m. The number of weeds present in each plot was 
counted at 0, 9, 15, 19, and 25 days after treatment (DAT). Weed control 
was visually evaluated on a percent scale where 0 represents no control, 
and 100 represents complete control. Data were examined for normality 
and constant variance prior to analysis. Data collected over time, such as 
visual weed control and weed densities, were analyzed using the 
repeated statement in SAS (version 9.4, SAS Institute Inc., Cary, NC). For 
the same data collection timing, the broadcast and precision spraying for 
visual weed control were compared with the student’s T-test at P = 0.05; 
the surviving weed number between the treatments were compared 
using the Fisher’s Protected LSD test at P = 0.05. 

2.5. Spray volume 

Two field experiments were conducted on separate bermudagrass 
turf sites with varying weed coverage using the developed precision 
sprayer at the NFU from December 2021 to January 2022. On each turf 
site, a total of 15 plots (1 by 3 m) were selected based on visual weed 
coverage of 0, 15, 35, 65, or 85%. The weed coverage either naturally 
occurred or was hand-weeded to achieve a target weed density. The 
amount of water sprayed in each plot was recorded. 

The experimental design was a randomized complete block with 
three replications. Data were checked for normality and constant vari-
ance prior to analysis. Data were plotted on the figure and regressed 
against the following linear regression equation: 

y = − 1.394 + (3.965 × x) (4)  

where y represents spray volume (L ha− 1), and x represents weed 
coverage (%). 

3. Results and discussion 

3.1. Smart sprayer prototype 

The developed smart sprayer prototype moved intermittently and 
was controlled manually via a mobile application. Upon detecting the 

Table 1 
The hyperparameters used for training the convolutional neural networks.  

Deep learning 
architecture 

Optimizer Base 
learning 
rate 

Learning 
rate policy 

Batch 
size 

Training 
epochs 

DenseNet SGD 0.001 LambdaLR 64 60 
GoogLeNet Adam 0.0003 StepLR 64 60 
ResNet Adam 0.0001 StepLR 64 60 

Abbreviation: SGD, stochastic gradient descent. 
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target weeds, the platform stopped the navigation, and performed pre-
cision spraying. Position error at the centimeter level resulting from a 
slight delay could lead to a miss of target weeds (Wu et al., 2020). 
However, maintaining a steady speed when traveling over uneven field 
terrains is a challenge. This study focused on evaluating and comparing 
the performances of the broadcast and precision spraying for weed 
control. The smart sprayer was designed in an intermittent manner as it 
simplified the overall architecture of the prototype system. However, it 
should be noted that the current design is not time-efficient as the smart 
sprayer must stop prior to performing precision spraying. To improve 
time efficiency, the sprayer prototype needs to be modified to perform 
precision spraying while moving. 

Machine vision guidance system has been an active area of research 
and has achieved a high level of automation for row crops (Bakker et al., 
2008; Mavridou et al., 2019). In previous research, Åstrand et al. 
developed a machine vision guidance that could detect the row structure 
formed by the crops and guide the agricultural vehicle to travel along 
the rows (Åstrand and Baerveldt, 2002). Despite the success, existing 
algorithms for row crop guidance are not applicable in turf. As an 
alternative, Real-time Kinematic Global Positioning System (RTK-GPS) 

guidance systems can provide vehicle position with precise navigation in 
outdoor environments (Zhang et al., 2019). It is thought that the smart 
sprayer can be guided along a pre-defined path in turf based on the input 
from the RTK-GPS, which warrants further investigation. 

It should be noted that only 2 ROIs were cropped and processed per 
image due to the camera’s overlapping FOV and the spraying boom in 
our smart sprayer prototype. The design of the machine vision system 
and the structure of the spraying boom need to be optimized in order to 
use the full image during precision spraying. Mounting the camera 
directly on the spraying boom is a possible solution; however, in that 
case, the entire machine vision system needs to be redesigned because 
the camera’s height is nearly the same as that of the nozzles (Esau et al., 
2018). Overall, the functionality of the smart sprayer prototype as a 
whole is verified, although the system needs to be further optimized. 

3.2. Weed detection and localization 

For discriminating the sub-images containing weeds (spray) with the 
sub-images containing bermudagrass turf exclusively (nonspray), all of 
the three neural networks had an F1 score above 0.989 in the validation 

Table 2 
Weed detection results compared for the three convolutional neural networks investigated in the study.  

Deep learning architecture Herbicide spraying Validation dataset Testing dataset 

Precision Recall F1 score Precision Recall F1 score 

DenseNet Nonspray 0.986 0.996 0.991 0.992 0.988 0.990 
Spray 0.996 0.986 0.991 0.988 0.992 0.990 

GoogLeNet Nonspray 0.994 0.984 0.989 0.992 0.980 0.986 
Spray 0.984 0.994 0.989 0.980 0.992 0.986 

ResNet Nonspray 0.990 0.998 0.994 0.998 0.986 0.992 
Spray 0.998 0.990 0.994 0.986 0.998 0.992  

Fig. 4. Weed detection and localization results. The original image (1920 × 1080 pixels) was captured by the machine vision system (a), ROI 1 and ROI 2, and the 
neural network successfully predicted the grid cells (240 × 216 pixels) containing weeds while growing in dormant bermudagrass turf (red) (b, c). Abbreviation: 
ROIs = regions of interest. (For interpretation of the references to color in this figure legend the reader is referred to the web version of this article). 
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datasets (Table 2). The performances of weed detection were slightly 
reduced in the testing datasets compared to the validation datasets for 
all neural networks, but the F1 scores never fell below 0.986. ResNet 
outperformed DenseNet and GoogLeNet with the highest F1 scores 
(≥0.992) in the testing dataset. 

Fig. 4 shows the results of the developed custom software integrated 
with ResNet to detect and localize weeds growing in dormant bermu-
dagrass turf. As mentioned earlier, two ROIs were cropped from the FOV 
of the camera to detect and locate weeds inside the boom box. Each ROI 
was split into 8 grid cells corresponding to 8 nozzles on the boom. A total 
of 7 out of 8 grid cells for each ROI were marked as red (Fig. 4b and c), 
which represented the presence of weeds, while 1 grid cell had no red 
color, indicating that they merely contained the bermudagrass turf. The 
exact grid cells on the input images containing weeds were detected and 
located. Afterward, only the nozzles corresponding to those grid cells 
infested with weeds were turned on. In this case, nozzles 1, 2, 3, 4, 5, 6, 
and 7 (from left to right) were turned on for precision spraying in ROI 1, 
while nozzles 2, 3, 4, 5, 6, 7, and 8 were turned on for precision spraying 
in ROI 2. 

3.3. Weed control 

Visual weed control did not differ between the precision and 
broadcast spraying at all measurement timings (Table 3). Precision and 
broadcast spraying of glufosinate controlled 80 and 83% of weeds at 17 

DAT, respectively, and both treatments provided complete control at 25 
DAT. On the day of herbicide treatment, the nontreated control and the 
plots that received precision and broadcast herbicide treatments showed 
statistically equivalent weed densities and had an average of 14, 12, and 
8 weeds m− 2, respectively (Table 4). Both precision and broadcast 
spraying significantly reduced weed densities from the nontreated 
control at 9 DAT and thereafter. At 25 DAT, no surviving weeds were 
observed in the plots that received precision or broadcast herbicide 
treatments. The absence of survivors in the precision spraying treatment 
indicates that the smart sprayer prototype accurately delivered the 
glufosinate solution to every grid cell containing weeds. 

3.4. Spray volume 

When utilizing the smart sprayer, the spray volume exhibited a linear 
response with increases in visual weed coverage ranging from 15 to 85% 
(Fig. 5). This finding suggests that weed coverage could significantly 
impact the spray volume when utilizing the developed smart sprayer for 
precision herbicide application. The sprayer prototype sprayed a larger 
amount of glufosinate herbicide solution when the weed coverage 
increased. The smart sprayer prototype sprayed only 80 L ha− 1 of her-
bicide solution when the weed coverage was 15% but it increased to 362 
L ha− 1 when the visual weed coverage was 85%. This finding suggests 
that when the weed coverage is low, the developed sprayer can save 
more herbicide and thus is more economically efficient than the high 
weed coverage condition. 

4. Summary and conclusions 

In summary, a smart sprayer prototype was developed for precision 
herbicide application in dormant turf. The trained deep learning neural 
networks were integrated into the machine vision system of the smart 
sprayer prototype to identify and locate the grid cells containing weeds 
growing in dormant bermudagrass turf and control each nozzle for 
realizing precision herbicide spraying. ResNet showed the highest F1 
scores (≥0.992) in the testing datasets to detect and discriminate be-
tween the grid cells containing weeds and the grid cells containing 
bermudagrass turf only. Precise application of the herbicide only to the 
grid cells containing weeds could reduce herbicide input while 
achieving the same level of weed control compared to the broadcast 
application. However, the amount of herbicide saving depends on the 
weed coverage. The smart sprayer could save more herbicide when the 
weed coverage is low. Overall, the developed smart sprayer can be used 

Table 3 
Comparison of weed control efficacy between precision and broadcast applica-
tions in dormant bermudagrass turf.  

DATd Weed control (%)a Student’s T-test 

Precision applicationb Broadcast application P-value 

0 0 ± 0 0 ± 0 NSc 

1 0 ± 0 0 ± 0 NS 
3 0 ± 0 0 ± 0 NS 
5 0 ± 0 0 ± 0 NS 
7 4 ± 2.4 5 ± 2.0 NS 
9 5 ± 2.9 5 ± 2.0 NS 
11 33 ± 1.4 34 ± 4.7 NS 
13 48 ± 1.4 51 ± 6.6 NS 
15 64 ± 4.7 65 ± 6.5 NS 
17 80 ± 3.5 83 ± 8.5 NS 
19 90 ± 3.5 95 ± 2.9 NS 
25 100 ± 0 100 ± 0 NS  

a Weed control data were visually evaluated on a percent scale where 0 rep-
resents no control and 100 represents complete control. 

b Data are treatment means ± standard errors. 
c NS represents non-significant difference between precision and broadcast 

application on the same measurement timing at the 0.05 probability according 
to the Student’s T-test. 

d DAT, days after treatment. 

Table 4 
Precision versus broadcast herbicide application for reduction of weed densities 
in dormant bermudagrass turf.  

DATc No. weeds m− 2 P-value 

Nontreated 
controla 

Precision 
application 

Broadcast 
application 

0 14 ± 0.9 12 ± 2.3 8 ± 0.9 NSb 

9 14 ± 0.9a 9 ± 2.0 b 8 ± 1.2 b 0.0147 
15 14 ± 0.9a 4 ± 0.7 b 3 ± 0.5 b <0.0001 
19 14 ± 0.9a 1 ± 0.5 b 0.5 ± 0.3 b <0.0001 
25 14 ± 0.9a 0±0 b 0±0 b <0.0001  

a Treatment means on the same measurement timing were separated with 
Fisher’s Protected LSD test at the 0.05 significance level. 

b NS, nonsignificant difference at the 0.05 probability level. 
c DAT, days after treatment. 

Fig. 5. Herbicide spray volume depends on the weed coverage when using the 
developed smart sprayer prototype for precision herbicide application. Data 
were analyzed with linear regression equation y = -1.394 + (3.965 × x), where 
y represents spray volume (L ha− 1) and x represents visual weed coverage (%). 
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for precision weed control in turf. Adoption of this technology could 
significantly reduce herbicide input for turf weed management. Addi-
tional research is ongoing to optimize the developed smart sprayer 
prototype. 
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Barbero, M., Barnes, A., Eory, V., 2017. Precision agriculture technologies positively 
contributing to GHG emissions mitigation, farm productivity and economics. 
Sustainability 9 (8), 1339. 

Calvert, B., Olsen, A., Whinney, J., Rahimi Azghadi, M., 2021. Robotic spot spraying of 
Harrisia cactus (Harrisia martinii) in grazing pastures of the Australian rangelands. 
Plants 10 (10), 2054. 

Collobert, R., Weston, J., 2008. A unified architecture for natural language processing: 
deep neural networks with multitask learning. In: Proceedings of the 25th 
International Conference on Machine Learning, pp. 160–167. 

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P., 2011. 
Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12, 2493−
2537. 

Dai, X., Xu, Y., Zheng, J., Song, H., 2019. Analysis of the variability of pesticide 
concentration downstream of inline mixers for direct nozzle injection systems. 
Biosyst. Eng. 180, 59–69. https://doi.org/10.1016/j.biosystemseng.2019.01.012. 

Deb, G., 2006. Atrazine: a case study in the differences between regulations of endocrine 
disrupting chemicals in the EU and the US. Temp. J. Sci. Tech. & Envtl. L. 25, 173. 

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L., 2009. Imagenet: A Large-Scale 
Hierarchical Image Database, 2009 IEEE Conference on Computer Vision and Pattern 
Recognition. Ieee, pp. 248–255. 

Esau, T., Zaman, Q., Groulx, D., Farooque, A., Schumann, A., Chang, Y., 2018. Machine 
vision smart sprayer for spot-application of agrochemical in wild blueberry fields. 
Precis. Agric. 19 (4), 770–788. 

Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., Wang, G., 
Cai, J., Chen, T., 2018. Recent advances in convolutional neural networks. Pattern 
Recogn. 77, 354–377. https://doi.org/10.1016/j.patcog.2017.10.013. 

Hamuda, E., Glavin, M., Jones, E., 2016. A survey of image processing techniques for 
plant extraction and segmentation in the field. Comput. Electron. Agric. 125, 
184–199. https://doi.org/10.1016/j.compag.2016.04.024. 

Hasan, A.M., Sohel, F., Diepeveen, D., Laga, H., Jones, M.G., 2021. A survey of deep 
learning techniques for weed detection from images. Comput. Electron. Agric. 184, 
106067. 

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 
pp. 770–778. 

He, T., Liu, Y., Yu, Y., Zhao, Q., Hu, Z., 2020. Application of deep convolutional neural 
network on feature extraction and detection of wood defects. Measurement 152, 
107357. 

Hinton, G., Deng, L., Yu, D., Dahl, G.E., Mohamed, A., Jaitly, N., Senior, A., 
Vanhoucke, V., Nguyen, P., Sainath, T.N., Kingsbury, B., 2012. Deep neural networks 
for acoustic modeling in speech recognition: the shared views of four research 
groups. IEEE Signal Process. Mag. 29 (6), 82–97. https://doi.org/10.1109/ 
MSP.2012.2205597. 

Hoffman, R.S., Capel, P.D., Larson, S.J., 2000. Comparison of pesticides in eight US urban 
streams. Environ. Toxicol. Chem.: Int. J. 19 (9), 2249–2258. 

Hu, C., Xie, S., Song, D., Thomasson, J.A., Hardin IV, R.G., Bagavathiannan, M., 2022. 
Algorithm and system development for robotic micro-volume herbicide spray 
towards precision weed management. IEEE Rob. Autom. Lett. 7 (4), 11633–11640. 

Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q., 2017. Densely connected 
convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision 
and Pattern Recognition, pp. 4700–4708. 

Jin, X., Bagavathiannan, M., Maity, A., Chen, Y., Yu, J., 2022a. Deep learning for 
detecting herbicide weed control spectrum in turfgrass. Plant Methods 18, 94. 
https://doi.org/10.1186/s13007-022-00929-4. 

Jin, X., Bagavathiannan, M., McCullough, P.E., Chen, Y., Yu, J., 2022b. A deep learning- 
based method for classification, detection, and localization of weeds in turfgrass. 
Pest Manag. Sci. 78 (11), 4809–4821. https://doi.org/10.1002/ps.7102. 

Jin, X., Che, J., Chen, Y., 2021. Weed identification using deep learning and image 
processing in vegetable plantation. IEEE Access 9, 10940–10950. https://doi.org/ 
10.1109/ACCESS.2021.3050296. 

Jin, X., Liu, T., Chen, Y., Yu, J., 2022c. Deep learning-based weed detection in turf: a 
review. Agronomy 12 (12), 3051. https://doi.org/10.3390/agronomy12123051. 

Jin, X., Liu, T., McCullough, P.E., Chen, Y., Yu, J., 2023. Evaluation of convolutional 
neural networks for herbicide susceptibility-based weed detection in turf. Front. 
Plant Sci. 14, 1096802 https://doi.org/10.3389/fpls.2023.1096802. 

Jin, X., Sun, Y., Che, J., Bagavathiannan, M., Yu, J., Chen, Y., 2022d. A novel deep 
learning-based method for detection of weeds in vegetables. Pest Manag. Sci. 78 (5), 
1861–1869. https://doi.org/10.1002/ps.6804. 

Jordan, M.I., Mitchell, T.M., 2015. Machine learning: trends, perspectives, and prospects. 
Science 349 (6245), 255–260. https://doi.org/10.1126/science.aaa8415. 

Kamilaris, A., Prenafeta-Boldú, F.X., 2018. Deep learning in agriculture: a survey. 
Comput. Electron. Agric. 147, 70–90. 

LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature 521 (7553), 436–444. 
https://doi.org/10.1038/nature14539. 

Lee, W.S., Slaughter, D., Giles, D., 1999. Robotic weed control system for tomatoes. 
Precis. Agric. 1 (1), 95–113. 

Li, Q., Huang, G., Wang, Y., Liu, X., 2002. Advances of studies on ecological risk of 
herbicide atrazine and its determination and remediation. Ying Yong Sheng Tai Xue 
Bao J. Appl. Ecol. 13 (5), 625–628. 

Liakos, K.G., Busato, P., Moshou, D., Pearson, S., Bochtis, D., 2018. Machine learning in 
agriculture: a review. Sensors 18 (8), 2674. https://doi.org/10.3390/s18082674. 

Liu, B., Bruch, R., 2020. Weed detection for selective spraying: a review. Curr. Rob. Rep. 
1 (1), 19–26. 

Lu, J., Behbood, V., Hao, P., Zuo, H., Xue, S., Zhang, G., 2015. Transfer learning using 
computational intelligence: a survey. Knowl. Base Syst. 80, 14–23. 

Mavridou, E., Vrochidou, E., Papakostas, G.A., Pachidis, T., Kaburlasos, V.G., 2019. 
Machine vision systems in precision agriculture for crop farming. J. Img. 5 (12), 89. 

Mennan, H., Jabran, K., Zandstra, B.H., Pala, F., 2020. Non-chemical weed management 
in vegetables by using cover crops: a review. Agronomy 10 (2), 257. https://doi.org/ 
10.3390/agronomy10020257. 

Parra, L., Marin, J., Yousfi, S., Rincón, G., Mauri, P.V., Lloret, J., 2020. Edge detection for 
weed recognition in lawns. Comput. Electron. Agric. 176, 105684. 

Partel, V., Charan Kakarla, S., Ampatzidis, Y., 2019. Development and evaluation of a 
low-cost and smart technology for precision weed management utilizing artificial 
intelligence. Comput. Electron. Agric. 157, 339–350. https://doi.org/10.1016/j. 
compag.2018.12.048. 

Perez, A., Lopez, F., Benlloch, J., Christensen, S., 2000. Colour and shape analysis 
techniques for weed detection in cereal fields. Comput. Electron. Agric. 25 (3), 
197–212. 

Peteinatos, G.G., Weis, M., Andújar, D., Rueda Ayala, V., Gerhards, R., 2014. Potential 
use of ground-based sensor technologies for weed detection. Pest Manag. Sci. 70 (2), 
190–199. 

Pimentel, D., Burgess, M., 2014. Environmental and economic costs of the application of 
pesticides primarily in the United States. In: Integrated Pest Management. Springer, 
pp. 47–71. 

Shi, J., Li, Z., Zhu, T., Wang, D., Ni, C., 2020. Defect detection of industry wood veneer 
based on NAS and multi-channel mask R-CNN. Sensors 20 (16), 4398. 

Shuping, F., Yu, R., Chenming, H., Fengbo, Y., 2023. Planning of takeoff/landing site 
location, dispatch route, and spraying route for a pesticide application helicopter. 
Eur. J. Agron. 146, 126814. 

Slaughter, D.C., Giles, D.K., Downey, D., 2008. Autonomous robotic weed control 
systems: a review. Comput. Electron. Agric. 61 (1), 63–78. https://doi.org/10.1016/ 
j.compag.2007.05.008. 

Sokolova, M., Lapalme, G., 2009. A systematic analysis of performance measures for 
classification tasks. Inf. Process. Manag. 45 (4), 427–437. 

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., 
Vanhoucke, V., Rabinovich, A., 2015. Going deeper with convolutions. In: 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 
pp. 1–9. 

Tang, J.-L., Chen, X.-Q., Miao, R.-H., Wang, D., 2016. Weed detection using image 
processing under different illumination for site-specific areas spraying. Comput. 
Electron. Agric. 122, 103–111. https://doi.org/10.1016/j.compag.2015.12.016. 

Utstumo, T., Urdal, F., Brevik, A., Dørum, J., Netland, J., Overskeid, Ø., Berge, T.W., 
Gravdahl, J.T., 2018. Robotic in-row weed control in vegetables. Comput. Electron. 
Agric. 154, 36–45. https://doi.org/10.1016/j.compag.2018.08.043. 

Wu, X., Aravecchia, S., Lottes, P., Stachniss, C., Pradalier, C., 2020. Robotic weed control 
using automated weed and crop classification. J. Field Robot. 37 (2), 322–340. 

Xie, S., Hu, C., Bagavathiannan, M., Song, D., 2021. Toward robotic weed control: 
detection of nutsedge weed in bermudagrass turf using inaccurate and insufficient 
training data. IEEE Rob. Autom. Lett. 6 (4), 7365–7372. 

X. Jin et al.                                                                                                                                                                                                                                       

http://refhub.elsevier.com/S0261-2194(23)00125-4/sref1
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref1
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref2
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref2
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref3
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref3
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref3
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref4
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref4
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref4
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref4
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref5
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref5
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref5
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref6
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref6
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref6
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref7
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref7
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref7
https://doi.org/10.1016/j.biosystemseng.2019.01.012
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref9
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref9
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref10
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref10
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref10
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref11
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref11
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref11
https://doi.org/10.1016/j.patcog.2017.10.013
https://doi.org/10.1016/j.compag.2016.04.024
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref14
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref14
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref14
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref15
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref15
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref15
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref16
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref16
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref16
https://doi.org/10.1109/MSP.2012.2205597
https://doi.org/10.1109/MSP.2012.2205597
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref18
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref18
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref19
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref19
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref19
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref20
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref20
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref20
https://doi.org/10.1186/s13007-022-00929-4
https://doi.org/10.1002/ps.7102
https://doi.org/10.1109/ACCESS.2021.3050296
https://doi.org/10.1109/ACCESS.2021.3050296
https://doi.org/10.3390/agronomy12123051
https://doi.org/10.3389/fpls.2023.1096802
https://doi.org/10.1002/ps.6804
https://doi.org/10.1126/science.aaa8415
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref28
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref28
https://doi.org/10.1038/nature14539
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref30
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref30
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref31
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref31
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref31
https://doi.org/10.3390/s18082674
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref33
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref33
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref34
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref34
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref35
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref35
https://doi.org/10.3390/agronomy10020257
https://doi.org/10.3390/agronomy10020257
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref37
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref37
https://doi.org/10.1016/j.compag.2018.12.048
https://doi.org/10.1016/j.compag.2018.12.048
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref39
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref39
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref39
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref40
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref40
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref40
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref41
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref41
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref41
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref42
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref42
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref43
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref43
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref43
https://doi.org/10.1016/j.compag.2007.05.008
https://doi.org/10.1016/j.compag.2007.05.008
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref45
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref45
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref46
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref46
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref46
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref46
https://doi.org/10.1016/j.compag.2015.12.016
https://doi.org/10.1016/j.compag.2018.08.043
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref49
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref49
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref50
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref50
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref50


Crop Protection 172 (2023) 106302

8

Yu, J., Schumann, A.W., Cao, Z., Sharpe, S.M., Boyd, N.S., 2019a. Weed detection in 
perennial ryegrass with deep learning convolutional neural network. Front. Plant 
Sci. 10, 1422. https://doi.org/10.3389/fpls.2019.01422. 

Yu, J., Schumann, A.W., Sharpe, S.M., Li, X., Boyd, N.S., 2020. Detection of grassy weeds 
in bermudagrass with deep convolutional neural networks. Weed Sci. 68 (5), 
545–552. 

Yu, J., Sharpe, S.M., Schumann, A.W., Boyd, N.S., 2019b. Deep learning for image-based 
weed detection in turfgrass. Eur. J. Agron. 104, 78–84. https://doi.org/10.1016/j. 
eja.2019.01.004. 

Yu, J., Sharpe, S.M., Schumann, A.W., Boyd, N.S., 2019c. Detection of broadleaf weeds 
growing in turfgrass with convolutional neural networks. Pest Manag. Sci. 75 (8), 
2211–2218. 

Zhang, W., Gai, J., Zhang, Z., Tang, L., Liao, Q., Ding, Y., 2019. Double-DQN based path 
smoothing and tracking control method for robotic vehicle navigation. Comput. 
Electron. Agric. 166, 104985. 

Zhou, H., Zhuang, Z., Liu, Y., Liu, Y., Zhang, X., 2020. Defect classification of green 
plums based on deep learning. Sensors 20 (23), 6993. 

Zhuang, J., Li, X., Bagavathiannan, M., Jin, X., Yang, J., Meng, W., Li, T., Li, L., Wang, Y., 
Chen, Y., 2021. Evaluation of different deep convolutional neural networks for 
detection of broadleaf weed seedlings in wheat. Pest Manag. Sci. 78 (2), 521–529. 
https://doi.org/10.1002/ps.6656. 

X. Jin et al.                                                                                                                                                                                                                                       

https://doi.org/10.3389/fpls.2019.01422
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref52
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref52
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref52
https://doi.org/10.1016/j.eja.2019.01.004
https://doi.org/10.1016/j.eja.2019.01.004
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref54
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref54
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref54
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref55
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref55
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref55
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref56
http://refhub.elsevier.com/S0261-2194(23)00125-4/sref56
https://doi.org/10.1002/ps.6656

	Precision weed control using a smart sprayer in dormant bermudagrass turf
	1 Introduction
	2 Materials and methods
	2.1 Overview
	2.2 Weed detection and localization
	2.3 Main control system
	2.4 Weed control
	2.5 Spray volume

	3 Results and discussion
	3.1 Smart sprayer prototype
	3.2 Weed detection and localization
	3.3 Weed control
	3.4 Spray volume

	4 Summary and conclusions
	Declaration of competing interest
	Data availability
	Acknowledgements
	References


